Some geometric equations with critical nonlinearity on the boundary

نویسنده

  • Veronica Felli
چکیده

A theorem of Escobar asserts that, on a positive three dimensional smooth compact Riemannian manifold with boundary which is not conformally equivalent to the standard three dimensional ball, a necessary and sufficient condition for a C2 function H to be the mean curvature of some conformal flat metric is that H is positive somewhere. We show that all such metrics stay in a compact set with respect to the C2 norm and the total degree of all solutions is equal to −1. Similar existence and compactness results are also obtained for more general equations. MSC classification: 35J60, 53C21, 58G30.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deflection Analysis of Compliant Beams of Variable Thickness and Non-Homogenous Material under Combined Load and Multiple Boundary Conditions

This paper studies a new approach to analyze the large deflection behavior of prismatic and non-prismatic beams of non-homogenous material under combined load and multiple boundary conditions. The mathematical formulation has been derived which led to a set of six first-order ordinary differential equations. The geometric nonlinearity was solved numerically using the multiple shooting method co...

متن کامل

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

Effects of Geometric Nonlinearity on Stress Analysis in Large Amplitude Vibration of Moderately Thick Annular Functionally Graded Plate

This paper deals with the nonlinear free vibration of thick annular functionally graded material plates. The thickness is assumed to be constant. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on the first-order shear deformation plate theory and...

متن کامل

The Influence of Using Soil Particles Percentage in Comparison with Geometric Characteristics of Soil Particles on the Accuracy of the Pedotransfer Equations and the Critical Point of SWRC

Soil water retention curve (SWRC) reflects different states of soil moisture and describes quantitative characteristics of the unsaturated parts of the soil. Direct measurement of SWRC is time-consuming, difficult and costly. Therefore, many indirect attempts have been made to estimate SWRC from other soil properties. Using pedotransfer functions is one of the indirect methods for estimating SW...

متن کامل

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001